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We give rigorous derivation of Brinkman's equation as the effective equation for 
slow viscous flow in porous media with high porosity. The medium is composed 
of spherical obstacles distributed randomly, and the microscopic flow is 
described by the Stokes equation. Along the road we give W~ convergence 
estimates for the point-sources approximation. 
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1. I N T R O D U C T I O N  

The derivation of macroscopic equations for flow in porous media is a 
long-standing problem of highly practical and theoretical importance. One 
of the equations commonly used is Brinkman's equation (Brinkman, (2) 
Saffman(15)), In this paper we show that the solution to this equation is 
indeed the limit (in the appropriate sense) of the flow of slow viscous 
incompressible fluid through a random distribution of spheres (which is 
our model for a porous medium). 

We assume that the microscopic flow is described by Stokes equation 
(Happel and Brenner(7)), and that the number of spheres N goes to ~ as 
their radius goes to zero under the scaling 

R N' c,' = 0(1) (1.1) 

In the last decade there several works appeared which analyzed boun- 
dary value problems for the Laplace equation and the heat equation in a 
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similar setup (Kac, (9) Rauch and Taylor, (14) Hruslov and Marchenko, (8~ 
Papanicolaou and Varadhan, (13) Ozawa, (12) Figari, Orlandi, and Teta(5)). 
Our approach is similar to the one suggested first by Ozawa C12) and then 
extended and clarified by Figari, Orlandi, and Teta. (5) The idea is first to 
approximate the full microscopic problem by point sources and then to 
average those singularities in order to obtain the desired smooth field. 
There is, however, a major difference between our proof and the works we 
mentioned above: Stokes equation does not have a maximum principle, 
nor does it have an obvious probabilistic interpretation, so that the 
arguments used for the elliptic problems do not go through here. Instead, 
we use in Section 3 variational principles to establish the convergence of 
the point-sources approximation to the microscopic flow. Interestingly, we 
obtain estimates in the W21 norm in contrast to the Lp estimates obtained in 
Refs. 12 and 5. 

In Section 2 we formulate the physical problem, describe the 
underlying probability distributions, and give a few preliminary lemmas. 
The point sources are averaged out in Section 4 where we show that they 
converge to the smooth solution of Brinkman's equation. This part is along 
the same line as Figari, Orlandi, and Teta (5) and actually can be abstracted 
so that it holds for a large family of operators. The reader can consult 
Brinkman, (2) Childress, (4) Caflisch and Rubinstein, (3~ Lundgren, (11) 
Saffman, (15) or Tam (16) (among others) for formal derivations and various 
applications of the Brinkman's equation. 

2. FORMULATION AND BASIC ESTIMATES 

Let D ~ R 3 be an open smooth domain. {y j} j = 1,..., N are a collec- 
tion of points in D that are independent identically distributed random 
variables with density function p(x) which is continuous with compact sup- 
port in D. There is a sphere BJ v centered at each yj with radius 

~P 
R - - F  ~' N'  =0 (1 )  (2.1) 

Set D N = D - U Jr= 1 BN, and consider in D N the problem 

1.~ A U  N -- •u N = VP N + f in D s 

V. u N = 0 in D u 

u N = 0  on Sj v j = I ,  2,...,N 

(2.2) 
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Here # is the viscosity, u the velocity, and P the pressure, while S)Y is the 
surface of BJ v and f(x) is a continuous vector field with compact support in 
D. (We concentrate here on D = R 3, so we do not prescribe boundary con- 
ditions on 8D. It is easy to extend our proofs to bounded domains). 

Equation (2.2) is the Laplace transform of the time-dependent Stokes 
equation. The fundamental tensor for that equation in free space is given 
by ~ where 

l i e  alx~ I 632 (1--e ~,x yl)l 
(w)~ Ix-y[ ' ~ + ~  ~ - 2 i x - Y [  " (2.3) 

so that 
w = ~ / e  

solves 

# Vw - #a2w = VP - e6(x - y) (2.4) 

(derivatives are with respect to x). 
We want to prove that [ l  N converges (in a sense which will be made 

precise in the sequel) to the macroscopic vector field v(x) which is defined 
as the solution of 

# A v - 2 v - 6 ~ p o V p ( x ) v = V P + f  in D 
(2.5) 

V ' v = 0  in D 

(2.5) is sometimes referred to as Brinkman's 
Lundgren, (11) and Tam(~6)). 

We start with a few preliminary propositions: 

equation (Saffman, (~5) 

Lemma 1. 
NC and 12~ _ 12 be that part of 12 for which 

min lYi - -  Yjl ~> cN-I  +~ 
i ~ j  

1 
N---5 ~'lYe-Yjl.. - 3 + ~ < c <  oo 

I,J 

and 

Let 12 be the configurations ensemble of particle centers, 

)Y~- Yjl -2 [yj_ Yk1-2 

(c will denote a generic constant, and Z~ -= Y~j.j~ i). 

v < �89 (2.6) 

4>0 (2.7) 

< c < oo (2.8) 
1 

S--~ i , j ,k  
i ~ j ~ k  
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Then 

lim P a ( ~  - f2~) = 0 
N ~ c o  

A proof is given by Ozawa. (t2) (He treats only (2.6) and (2.7), but (2.8) can 
be included using the same method). 

From now on we will assume {yj} satisfy (2.6)-(2.8), and hence our 
result will hold in probability. Notice that (2.6) excludes the possibility of 
overlapping. 

Next, let us define a 3N x 3N matrix ~ that will play a major role in 
the analysis, qt will be the N x N  blocks matrix where the (i, j)  block is 
~(yi, yj) for i C j ,  and the 3 x 3  zero matrix for i= j .  i , j :  1, 2,..., N. 

Lemrna 2. 

1 .  <~ca- ~ Vfl<~ 

II'll denotes matrix (or vectors) norm, a 2= 2/y. 

ProoL Rewriting ~(x, 0) 

e - ~ l x l  XiX j  

( V ) , j - - i X  4 ~ j + ~  e-~l*l 

1 - e  - < * l -  a lx l  e -~1"1 { 6 o. 3x,xj'~ 

and observing that 

6' a lxl  

1 - e  -~lXI - a l x l  e -~lXI 

~<(o lx l )  - ~  

we get 

So 

O--2fi 
II~(y~, y/)ll 2 ~< c [ y / -  yjl 2+2~ 

where we used (2.7). 

/ ~--  2fl  1J2 
<. c ( N  ~ Z '  i,j {y _yj[2+2~j  \ 

<~ ca  - g  

Q.E.D. 
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Unlike the diffusion equation, the Stokes equation does not satisfy the 
maximum principle. There are, however, certain a priori estimates and 
variational principles which hold for it. The following proposition will be 
used in the next section. 

Set 

I . e m m a  3. Let A be a bounded domain in R 3 

# A z - 2 z = V P  in A 

V . z = 0  in A 

Z[0A=U 

F(U)=#fAUijUij+2fAUiUi 

and let G be the class of piecewise differentiable divergence free vector fields 
in A, satisfying UlaA = U. 

Then 

F(z) = min F(u) 
u E G  

Proof. Let w e G and write w = z + u. 

F(w) = F ( z ) +  F ( u ) +  2# ~A UijZij + 22 ~A Uizi 

but uiozio = c~j(uizij ) - uizijj, so 

F ( w ) :  F ( z ) +  F ( u ) +  2 faA uizijn'ds-- 2 f Ri(].Lzi.j]-- ~Zi) 

using uil ~A = 0 and ui. i = 0 we conclude 

F(w) = F(z) + F(u)/> r (z )  Q.E.D. 

Note that for finite/~ and 2, F(u) is equivalent to the W2 ~ norm, where 

ilgll2,1(A) = f a IVgl2 + ]g]2 

The main result we are going to prove is: 
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Theorem 1. Let U N, u be the solution of (2.2), (2.5), respectively, 
under the conditions specified above. Then 

lim Pa{N~ltuN-vll2(D)<e)=l VT<{, z>0, 2>.--2o 
N--+ oo 

(11) N is extended from D1 to D by defining it to be identically zero in UBj, 
and 2o is a constant depending on D and e' but not on N). 

3. P O I N T - S O U R C E S  A P P R O X I M A T I O N  

Let wNe be the Green's function associated with (2.2). (A source of 
strength e is located at x e DlU). The idea is to approximate wUe by point 
sources distributed at {yj} with suitable strengths. For this purpose we let 

N - - ~ F ( x , y ) e + ~ ( Y j ,  Y)q~, q~=(q~x, q2x, j q3xJ ) (3.1) Z e - -  

J 

Where the qx are to be found from an appropriate set of boundary 
conditions. Point sources do not suffice however, to account for the full 
boundary conditions in (2.2). We ask instead that the average value of z~ 
on each Si be zero. Averaging q(x, y) for y ~ S/, neglecting the exponential 
factor (recall that N is large) and using 

Ixl =56u'~ 

where ( ->  means surface average over a sphere of radius R, we arrive at 
the following system of equations for {q~} 

~r yi)e + ~ '  V(yj, y~)q~ + N I3q~ = 0, i = 1, 2,..., N (3.2) 
J 

Here ~ = 6=#~' and IK is the K • K identity matrix. 
Construct now a vector ~1 of length 3N, which is composed of N chains 

of length 3, the kth chain being q~, the matrix ~ as in Section 2, and the 
3N• 3 matrix 6(x,  {yj}) 

q / ( X ,  y l )  

~ =  

~(x, YN) 

Then, (3.2) can be written as 
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SO 

From Lemma 2, I[(~/N) 'i'll ~<ca -B, so ~lx is well-defined for 2 large 
enough. Returning to (3.1) we rewrite z N as 

zN = ~P(X, y )e - -N  ~T({y/}, y ) N O  +IaN ~e 

Note that 

(3.4) 

IIN(y) : f wN(x, y) f(x) dx (3.5) 

~(x) f(x)] dx (3.6) 

and similarly we set 

llN(y) = f ~/(X, y) f(x) dx - tl)T(y) + I3N 

Theorem 2. 

[[qN(y) __ uN(y)[IZ (D N) < cN-~ for any 

and {Yi} zQN" 

Proof. Let fiN= qN(y)__ uU(y). 6N solves 

/~ d6 N -  ~6 N = V/~N in D N 

V. fiN=0 in D N 

~N(y) = qN(y) for y ~ Sr 

7<~,  2 ) 2 0  

i=  1, 2,..., N 

(3.7) 

where 

t qf= - N I  ~ + I z N  ~(x, {yi}) f(x) dx (3.9) 
/ 

qN(y) = f [q(x, y) - ~F(x, yi)] f(x) dx + ~ '  { [q/(yj, Yi)] - ~(y/. Y)} q• 
J 

+ [ II/(yi' Y) ---NI3]c~ q} y~Si  (3.8) 

We want to use the variational principle (Lemma3). First we need an 
estimate for qU(y) on the boundaries. Recalling (3.2) we write 
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From the potential estimate 

sup f f ( y )  dy 
x [ x - y  ~ 

we get 

1 
<~[Lfi[p, P >  1 -  (c~/3) (3.10) 

IrlN(y)l ~<Nllfllq 1-4- c , ilq it Lyj-y 1-2+ctiq li, 
J 

y ~ S  i, q 1 > 3  (3.11) 

II~j-li ~< cN -~/2 llfll2 (3.12) 

We turn now to construct a candidate field x to be used in the variational 
principle. Let { Ti} i =  1, 2,..., N be the following domains 

T~= {x; c(/N<~ I x - y i [  <~2c(/N} 

From (2.6) these are "security domains." In each T i let V be the vector 
satisfying 

V" x ; =  0 in T i 

V(y) = qN(y) y e S~ 

xi(y) = 0 IY - y ' l  = 2c~'/N 

Such a vector exists since the compatiblity condition (~s, 11Nn ds= 0) is 
satisfied by the definition of qN. 

For smooth domains, there are a priori estimates for problems like 
(3.13). In order to use them we rescale 

(3.13) 

x = z /N  

and observe that 

ItV(x)tl 2,1 ~< N-l /2  IIV(z)ll 2,, (3.14) 

But on the z scale, problem (3.13) is considered in a smooth domain, and 
we can use the estimate 

[l~cil]2a(Ti) <~ c IIqNII 2,1/2(63Ti) (Ladyzenskaya, Ref. 10) 

Another useful estimate which is obtained from (3.9), (3.10), and Lemma 2 
is 
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~eT, ds and ~ar~ar , (dzdz ' / l z -z ' l  3) are bounded, hence it follows from 
(3.11) that 

. _<C C 2~ I!qNII2,1/=(~T,)~llfllq,+--N IIqJII [Yj--Yil 2+cllq)tl (3.15) 
J 

We now define ~ to be ~ in T~ and zero elsewhere. 

[l~r[2,1(O~) = ~ II'~i(x)ll2,~(Ti) 
i 

~i C C" N -3/2 ~ '  <~N -~/2 _~llftlq~+ rlq~ll ly j -yzl  2+cN-~/2~ I[q•ll 
i,j i 

where we use (3.14) and (3.15). 
Let now Q be the matrix 

(Q)u = l y / - y e [  2 i # j  

0 i = j  

IIQ[I --= ( ~ '  ] y i -  y#[ -4 )  1/2 �9 ~< cNl+ E(1 v)i1+r (3.16) 
i,j 

for v < �89 r > 0, and (2.6) and (2.7). 
Hence (applying Cauchy Schwatz inequality) 

[]"C[[ 2 ,1(ON) "~< cN-1/2 [[fll q~ + cN-3 /2  Ilgtfll IIQIJ" N1/2 q- c Ilqf/t 
<~ cN 1/2 Hfllq~ + cN-(1/6)+z [IfJl= 

(In the last step we used (3.12) and (3.16)). 
Recalling Lemma 3 and the remark on the equivalence of H'H2.1 and 

F(.), we obtain 

r16Nl12,1<<, cN -~ T < ~ 

which is in fact stronger than the statement of the theorem. Q.E.D. 

Remarks. 

1. It is obvious from the proof that we could have used weaker conditions 
on f. For example, we can take fE Lq(D), q > 3 with fast decay for large 
Ix[. 

2. tiN(y) can be extended to all D, and the difference between the full vec- 
tor field and the reduced one can be shown to be less than cN -~/2 (in 
L 2 norm). The proof is exactly the same as the one given by Figari, 
Orlandi, and Teta. (5) Notice also that in our scaling 

VoI(D-DN)=O(N-2)- -*O as N--+ oo 

822/44/5-6-10 
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4. H O M O G E N I Z A T I O N  OF THE P O I N T - S O U R C E S  
A P P R O X I M A T I O N  

The work we have put into the point-sources approximation pays off 
now, since we do not have to deal anymore with the complicated geometry. 
Our next step is to prove that qN converges in the appropriate sense to v. 
We follow here the homogenization procedure suggested by Figari, 
Orlandi, and Teta. (5) Even though their work dealt with the Laplace 
equation, a careful examination of their homogenization theorem shows 
that it applies to a very general family of equations, among them the 
Stokes equation. The idea is to compare the resolvent expansion of qN(y) 
and v(y). For every U we let 

Then 

F / -  f F(x, y) f(x) dx , /U_-- (U/) T (4.1) 

v(y)= ~_, W' (-~)'~(Wp)~ (4.2) 
n = O  

o r  

(, 

v,(y)--  ~ (_~)n  j W~,I(Y, zl) p(zl) 
n = O  

• W,l~2(zl, z2) p ( z 2 )  W,~ x~,,(zn- 1, z~) p(z~) 

x W,.,n+l(Zn, Zn+ 1) f~.+l(Z~ + 1) "dZl �9 �9 �9 dzn + 1 (4.3) 

where fli = 1, 2, 3. Also 

qN(y)=~f+ ~ (__~V) l l~(__~v)n- ' (q / )n  l ~ f  (4.4) 
n = l  

A general term in this expansion is of the form 

(c~/N) s ~B,(Y, YJi) ~1~2(Y+,, YJ2) '" " W,s-,ps(Y+,-~, YJ,)(Wf),,(YJ,) (4.5) 

We would like to dispose of terms which contain repeating points y~. (This 
will make our averaging procedure much easier.) 

We decompose qm into 

qN(y) = vN(y) + ~U(y) (4.6) 

where ~N(y) contains all the terms with "self-intersecting graphs," and v N 
contains the rest, i.e., all the terms in (4.4) in which each point appears at 
most once. 
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The following Lemma holds (see also Remark 5 in Sect. 5): 

L e m m a  4. There is 20, such that for every 2>~2 o and for every 
e > 0  there is No, such that for every N>~No and for {yj} ~Q~ 

IINI/2~NIr=~ Ilfll= Vfe Co(D) 

The proof is given in the Appendix. 
In the sequel, we emphasize the dependence of If[ N of f by writing it as 

llN(f). Let us define for every f6  L2(D ) and g which is continuous and has a 
compact support in D the random variable 

N 

oN(f, g ) =  ~ (_cQs. {N-S+(m) f . ( qp  1). ~l)g_Xl/2Ff, ~/(~p)g]} (4.7) 
s = 0  

where (u, v) is the scalar product in L2(D) of vector fields and (gt"). means 
that we count only the terms which belong to vU(g). 

Using the resolvent expansions and the fact that (qt ' ) .  does not con- 
tain repeating points we see that 

lim oN(f, g) - N1/2[f, vU(g) -- v(g)] = 0 (4.8) 
N ~ o 3  

Taking expection o n  oN(f, g) means taking expectations on terms like (4.5), 
only that now the yj are all distinct. Hence, the expectation of such a term 
is precisely the corresponding term in the resolvent expansion of v~ (4.3). 
We only have to count how many such terms (like (4.5) with distinct yj) 
appear, and one finds 

N 

E[O~V(f,g)]=U 1/2 ~ [y(N,s) -  l](--cc)s[f, ~(ujp)~] (4.9) 

where 7(N, s) = N!/(N-  s)! N s. 

k e m m a  5. 
lim E[OU(f, g)] = 0 

N ~ o o  

Proof. Notice first (from the proof of Lemma 2, for example) that 

I(f, V(Vp)~)[ ~< c2-" 

Consider now s: 1, 2,.., lg N for N large. Then 7(N, s) can be expanded as 

S 2 

7(N, s) -~ 1 - -}-~+ ""  

and for any s, 7(N, s) ~< 1. 



860 Rubinstein 

Combining these observations we estimate 

lg 2 N lgl-~N 
IE[ON( f, g)]l ~<--~-~ L (c2) S + cN ~12 

s = l  s = l g N + l  

as N--+ oo for 2 large enough. 

(c2)-s __+ 0 

Q.E.D. 

Next we compute the covariance for f, f' 

EEOU(f, g) ON(f, g)] 
N 

= ~ ( - e ) ~ + "  E [ N  "-~'+l f ' i : l (~) . - '  ~Og s, Ill(V).-~ " ' - " i ig ]  
S,S' ~ 1 

+ N[1 -7(N, s)-~,(N, s')][f, V(Wp)~][t", ~r162 (4.10) 

A tedius computation, which is basically similar to our proof of 
Lemma 5, yields 

Lemma 6. 

ErON(f, g) oN(f t, g)] -~- G(f, f', g) 

where G is a bounded functional on L 2 ( D ) x  L2(D ) x Lz(D ). (An explicit 
formula for G can be given, but we do not find it very illuminating, 
especially when Theorem 2 gives a convergence rate which is less than -~). 

Finally, we extend uN(y) into D by defining it to be identically zero in 
L.JN=I Bj. Lemma6,  Lemma 5, Lemma4,  (4.8), Remark 3 in Section3, 
Theorem 2, and Lemma 1 altogether complete the proof of Theorem 1. 

5. S O M E  R E M A R K S  

1. Our proof is valid for 2/> 20, where 20 depends on e' and the domain. 
Had we worked with the time variable we would get Theorem 1 for 
t~< T <  oo. Implicit in our formulation is the assumption that (2.2) 
describes the microscopic flow. This assumption means that we are 
actually studying the decay of a momentum perturbation for a flow 
with small Reynolds number in random media. 

2. Brinkman's equation is often written in the form 

#' A v - ~ v = V P  (5.1) 
K 
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where K is the permeability of the porous medium and #' is some effec- 
tive viscosity (Lundgren(~t>). It follows from our derivation that 

or 

1 
# ' = # ,  K = - - -  

6~a'p 

2 R2 -1 K = ~  -fi (5.2) 

where fl is the volume fraction occupied by the spheres. Equation (5.2) 
is the expression for K that was derived by Brinkman for dilute suspen- 
sions. 

3. The scaling we used here corresponds to very low volume fraction of 
obstacle (high porosity). What happens in higher volume fractions? 
This is still an open question, although there have been some attempts 
to find corrections to (2.5). (See, for example, Childress (4) and 
Hinch. (17)) We believe that a possible approach is to improve 
Theorem 2 by going to higher multipoles. 

4. It is not hard to check that the proof holds for a distribution of non- 
identical spheres with Rj = o~/N, provided that 0 < c~ ~< @ ~< c~ + < co, 
and that there exists a function c~'(x) such that 

t aj~b(yj) ~ p(y) c~'(y) ~b(y) dy as N - ,  
~/ j= 1 

for every continuous ~b. 

5. It should be noted that Lemma 4 is a crucial step in the proof. It is 
very important to control the terms in the expansion (4.4) for two 
reasons: 

(i) Graphs which contain too many loops do not have moments 
(with respect to P~). 

(ii) The terms with nonintersecting graph are much easier to handle 
since we can average them "layer by layer." 

APPENDIX 

The proof of Lemma 4 is similar to the one given in Ref. 5 but we give 
it here explicitly because of its importance. 

We notice first that for f~Co(D), llu(f)~L2(O). Consider now (for 
a>0) 

N 1-~[h, Cu(f)] for h e L 2, f~ Co(D) 
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Let the first point  which repeats itself (see (4.4), (4.5)) be at the nl place in 
the expansion, and assume that  it appears again at the nl + n2 place. The 
contr ibut ion of such a term is less than 

~n + 1 3N 

T~ .2=N.+~  ~ ( h l ~ l i ( ~ n l - 1 ) i p ( ~ ) p k ( ~ l k t ( ~ n 2 - 1 ) l q ( ~ l ) q k ( ~ ) k ' r  

i , j ,p ,k  
r,q,l = 1 

. ( 0 . - n l  . ~ - l l A , t , ~ )  j 

where I k -  k'l < 3. 
Using the potential  estimate (3.8) (recall that  (9)o.~< ( c / l y i - y j [ )  and 

applying Cauchy Schwartz inequality repeatedly we find 

where 

Z.,.2 ~< co(' + 1 II h II 2 II fH 2 " N -  ~. L(N)  

L(N)<. N 3  ~ lYi-Yjl 2 I Y j - - Y k t - 2 + N - 3  ~ ' IYi- -Yj l  4 
i , j ,k  i,j  

i ~ j ~ k  

From (2.7) and (2.8), L(N)<~ e and for every n there are at most  n 2 
terms like Tn~n2. Recalling Lemma 2 we arrive at 

N~-O[h, ~N(f)] ~< Ilfllz []h[12 N ~ ~ (c2) "~/2n2 
n = 2  

where the sum on the right converges for 2 big enough. Q.E.D. 
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